
Flash Friendly File System (F2FS) Overview

Leon Romanovsky
leon@leon.nu

www.leon.nu

November 17, 2012

Leon Romanovsky leon@leon.nu F2FS Overview

Disclaimer

Everything in this lecture shall not, under any circumstances, hold
any legal liability whatsoever. Any usage of the data and
information in this document shall be solely on the responsibility of
the user. This lecture is not given on behalf of any company or
organization.

Leon Romanovsky leon@leon.nu F2FS Overview

Introduction: Flash Memory

Definition

Flash memory is a non-volatile storage device that can be
electrically erased and reprogrammed.

Challenges

block-level access

wear leveling

read disturb

bad blocks management

garbage collection

different physics

different interfaces

Leon Romanovsky leon@leon.nu F2FS Overview

Introduction: Flash Memory

Definition

Flash memory is a non-volatile storage device that can be
electrically erased and reprogrammed.

Challenges

block-level access

wear leveling

read disturb

bad blocks management

garbage collection

different physics

different interfaces

Leon Romanovsky leon@leon.nu F2FS Overview

Introduction: General System Architecture

Leon Romanovsky leon@leon.nu F2FS Overview

Introduction: File Systems

Optimized for disk storage

EXT2/3/4

BTRFS

VFAT

Optimized for flash, but not aware of FTL

JFFS/JFFS2

YAFFS

LogFS

UbiFS

NILFS

Leon Romanovsky leon@leon.nu F2FS Overview

Background: LFS vs. Unix FS

Leon Romanovsky leon@leon.nu F2FS Overview

Background: LFS Overview

Leon Romanovsky leon@leon.nu F2FS Overview

Background: LFS Garbage Collection

1 A victim segment is selected through referencing segment
usage table.

2 It loads parent index structures of all the data in the victim
identified by segment summary blocks.

3 It checks the cross-reference between the data and its parent
index structure.

4 It moves valid data selectively.
Leon Romanovsky leon@leon.nu F2FS Overview

Background: LFS Summary

maximized write throughput

easy snapshotting

easy recovery

uneffective while storage has low empty space

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Introduction

Assumes presence of FTL

no effort to distribute writes
random write area enlarged
grouping blocks with similiar life expectancies up to six in
parallel
data structures aligned to the units of FTL

Based on the log-structured design:

requires copy-on-write
free space is managed in large regions which are written to
sequentially

some metadata, and occasionaly some regular data is written
via random single block writes

support different garbage collection algorithms

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Introduction

Assumes presence of FTL

no effort to distribute writes
random write area enlarged
grouping blocks with similiar life expectancies up to six in
parallel
data structures aligned to the units of FTL

Based on the log-structured design:

requires copy-on-write
free space is managed in large regions which are written to
sequentially

some metadata, and occasionaly some regular data is written
via random single block writes

support different garbage collection algorithms

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Introduction

Assumes presence of FTL

no effort to distribute writes
random write area enlarged
grouping blocks with similiar life expectancies up to six in
parallel
data structures aligned to the units of FTL

Based on the log-structured design:

requires copy-on-write
free space is managed in large regions which are written to
sequentially

some metadata, and occasionaly some regular data is written
via random single block writes

support different garbage collection algorithms

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: On-disk Layout

Block (4K in size)

Segment (2MB in size)

Section (consecutive segments)

Zone (set of sections)

Area (multiple sections)

Volume (six areas)

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Name Conventions

Superblock (SB)

located at the beginning of the partitions

two copies exist

basic partition information

some default parameters of f2fs

Checkpoint (CP)

file system information, bitmaps for valid NAT/SIT sets,
orphan inode lists, and summary entries of current active
segments.

Node Address Table (NAT)

block address table for all the node blocks stored in Main area.

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Name Conventions

Segment Information Table (SIT)

segment information such as valid block count and bitmap for
the validity of all the blocks

74 bytes per entry (segment)

keep track of active blocks

Segment Summary Area (SSA)

summary entries which contains the owner information of all
the data and node blocks stored in Main area

Main Area

file and directory data including their indices

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Design

Blocks

4K in size

32 bits for address space (2(32+12) available blocks)

limited to 16 terabytes

Segments

512 blocks

2MB in size

each segment has segment summary block (file plus offset of
each block in the segment)

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Design

Blocks

4K in size

32 bits for address space (2(32+12) available blocks)

limited to 16 terabytes

Segments

512 blocks

2MB in size

each segment has segment summary block (file plus offset of
each block in the segment)

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Design

Sections

flexible size (power of two)

filled from start to end

clean one section at a time

default size is one segment per sector

6 sections “open” for writting

allows hot/warm/cold data segregation

Zones

any (integer) number of sections

default one sector per zone

intended to distribute “open” sections over different devices
for parallel processing

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Design

Sections

flexible size (power of two)

filled from start to end

clean one section at a time

default size is one segment per sector

6 sections “open” for writting

allows hot/warm/cold data segregation

Zones

any (integer) number of sections

default one sector per zone

intended to distribute “open” sections over different devices
for parallel processing

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Design

writes to NAT and SIT are cached till write to CP

minimize random block updates

packs random access to flash

out of spaces causes to random writes

read-only data (superblock) - never changes

segment summary blocks - updated in-place

double space allocation - primary/secondary location

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: File System Metadata Structure

shadow copy mechanism

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Index Structure

Nodes

inodes

direct node

indirect node

4KB∗(927+2∗1018+2∗1018∗1018+1018∗1018∗1018) := 3.94TB

index tree for a given file has a fixed and known size

block updates done via NAT (node address table)

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Index Structure

Nodes

inodes

direct node

indirect node

4KB∗(927+2∗1018+2∗1018∗1018+1018∗1018∗1018) := 3.94TB

index tree for a given file has a fixed and known size

block updates done via NAT (node address table)

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Index Structure

Nodes

inodes

direct node

indirect node

4KB∗(927+2∗1018+2∗1018∗1018+1018∗1018∗1018) := 3.94TB

index tree for a given file has a fixed and known size

block updates done via NAT (node address table)

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Directory Structure

directory entry == 11 bytes

hash - hash value of the file name

ino - inode number

len - the length of file name

type - file type such as directory, symlink, etc

directory block

214 dentry slots

dentry validity bitmap

4KB in size

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Directory Structure

DentryBlock(4K) = bitmap(27bytes) + reserved(3bytes) +
dentries(11 ∗ 214bytes) + filename(8 ∗ 214bytes)

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: File Lookup Complexity

The number of blocks and buckets are determined by,

bucket number to scan in level #n = (hash value) % (# of
buckets in level #n)

=⇒ O(log(# of files)) complexity

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Directory Structure Summary

combination of hash and linear search

global seed (possible vulnerable to hash collision attack)

stable address for telldir()

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Default Block Allocation

Node/Data Type Contains

hot node direct node blocks of directories

warm node direct node blocks except hot node blocks

cold node indirect node blocks

hot data dentry blocks

warm data data blocks except hot and cold data blocks

cold data multimedia data or migrated data blocks

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Free Space Management

Combination of two schemes, depends on file system status:

copy-and-compactions scheme

good for sequential write performance

suffers from cleaning overhead under high utilization

threaded log scheme

no cleaning process is needed

suffers from random write

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Cleaning process

on demand

triggered when there are not enough free segments to serve VFS
calls

background(kernel thread)

triggerred the cleaning job when the system is idle

greedy policy (on-demand cleaner)

F2FS selects a victim segment having the smallest number of valid
blocks

cost-benefit policy (background cleaner)

F2FS selects a victim segment according to the segment age and
the number of valid blocks in order to address log block thrashing
problem in the greedy algorithm

Victim segment list is managed in bit stream bitmap
Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Cleaning process

on demand

triggered when there are not enough free segments to serve VFS
calls

background(kernel thread)

triggerred the cleaning job when the system is idle

greedy policy (on-demand cleaner)

F2FS selects a victim segment having the smallest number of valid
blocks

cost-benefit policy (background cleaner)

F2FS selects a victim segment according to the segment age and
the number of valid blocks in order to address log block thrashing
problem in the greedy algorithm

Victim segment list is managed in bit stream bitmap
Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Cleaning process

on demand

triggered when there are not enough free segments to serve VFS
calls

background(kernel thread)

triggerred the cleaning job when the system is idle

greedy policy (on-demand cleaner)

F2FS selects a victim segment having the smallest number of valid
blocks

cost-benefit policy (background cleaner)

F2FS selects a victim segment according to the segment age and
the number of valid blocks in order to address log block thrashing
problem in the greedy algorithm

Victim segment list is managed in bit stream bitmap
Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Linux Samsung Test

Panda board

Kernel : Linaro 3.3

DRAM : 1GB

Partition : Samsung eMMC 4.5, 12GB

Test

./iozone -i0 -s 2g -r 4k -f $MNT -e -w -n

./iozone -i2 -s 2g -r 4k -f $MNT -e -w -R

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Linux Samsung Test

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Android Samsung Test

Galaxy Nexus

Android : 4.0.4 r1.2

Kernel : OMAP 3.0.8

DRAM : 1GB

Partition : /data, 12GB

Test

./iozone -i0 -i1 -i2 -s 512m -r 4k -f $MNT

Leon Romanovsky leon@leon.nu F2FS Overview

f2fs: Android Samsung Test

Leon Romanovsky leon@leon.nu F2FS Overview

Timeline

2 Jun. 2012 - Storage Summit at Linaro Connect Q2.12

5 Oct 2012 - [PATCH v1] introduce flash-friendly file system

23 Oct. 2012 - [PATCH v2] introduce flash-friendly file system

29 Oct. 2012 - f2fs review at Linaro Connect Q3.12

31 Oct. 2012 - [PATCH v3] introduce flash-friendly file system

Q3 2013 - Expected at the “real world”

Leon Romanovsky leon@leon.nu F2FS Overview

Links

Rosenblum, M. and Ousterhout, J. K., 1992, “The design and
implementation of a log-structured file system”, ACM Trans.
Computer Systems 10, 1, 2652.

Wikipedia:
http://en.wikipedia.org/wiki/Flash_memory

Anatomy of Linux flash file systems: http://www.ibm.com/

developerworks/linux/library/l-flash-filesystems/

Next-generation Linux file systems: NiLFS(2) and exofs
http://www.ibm.com/developerworks/linux/library/

l-nilfs-exofs/

Log structured file system for dummies
http://work.tinou.com/2012/03/

log-structured-file-system-for-dummies.html

Flash memory card design https://wiki.linaro.org/

WorkingGroups/Kernel/Projects/FlashCardSurvey

Leon Romanovsky leon@leon.nu F2FS Overview

http://en.wikipedia.org/wiki/Flash_memory
http://www.ibm.com/developerworks/linux/library/l-flash-filesystems/
http://www.ibm.com/developerworks/linux/library/l-flash-filesystems/
http://www.ibm.com/developerworks/linux/library/l-nilfs-exofs/
http://www.ibm.com/developerworks/linux/library/l-nilfs-exofs/
http://work.tinou.com/2012/03/log-structured-file-system-for-dummies.html
http://work.tinou.com/2012/03/log-structured-file-system-for-dummies.html
https://wiki.linaro.org/WorkingGroups/Kernel/Projects/FlashCardSurvey
https://wiki.linaro.org/WorkingGroups/Kernel/Projects/FlashCardSurvey

Links

LKML: [PATCH v1] introduce flash-friendly file system
https://lkml.org/lkml/2012/10/5/205

LKML: [PATCH v2] introduce flash-friendly file system
https://lkml.org/lkml/2012/10/22/664

LKML: [PATCH v3] introduce flash-friendly file system
https://lkml.org/lkml/2012/10/31/156

LKML: initial report on F2FS filesystem performance
https://lkml.org/lkml/2012/10/16/3

LWN: An f2fs teardown
http://lwn.net/Articles/518988/

Leon Romanovsky leon@leon.nu F2FS Overview

https://lkml.org/lkml/2012/10/5/205
https://lkml.org/lkml/2012/10/22/664
https://lkml.org/lkml/2012/10/31/156
https://lkml.org/lkml/2012/10/16/3
http://lwn.net/Articles/518988/

